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The elastic extension of an oriented and crystalline fibre built up of rigid-rod chains is analysed. A 
formula for the stress-strain curve is derived. It is shown that the shape of the initial crystal lite orientation 
distribution and the modulus for shear parallel to the chain direction are important factors determining 
the stress build-up during extension of the fibre. The relations predicted by this analysis agree well with 
the experimental data obtained from poly(p-phenylene terephthalamide) fibres. 
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INTRODUCTION 

The orientation process during uniaxial drawing of a 
polymer has long been the subject of many theoretical and 
experimental studies. In one of the earliest investigations 
Kratky introduced the affine deformation principle 1 
which denotes a spatial transformation in which every 
element of unit volume changes its shape in the same 
proportion as the macroscopic dimensions do. Relations 
between the orientation distribution and the extension 
ratio were derived for systems consisting of rigid rodlets 
freely suspended in a plastic medium. On the basis of 
studies on the deformation of regenerated cellulose fibres 
Kratky and Mark formulated the orientation process of a 
second case 2'3, viz. the deformation of a network of 
rodlets held together by crosslinks. These approaches are 
of a purely geometric nature. In an attempt to depart from 
this path J. J. Hermans introduced forces acting on the 
ends of the chain elements 4. Kuhn and Griin extended the 
affine deformation model for rubber-like polymers by 
introducing chains with intrinsic anisotropic properties s. 
Further development took place along two different 
paths. One is the development of the rubber elasticity 
theory and the other is the formulation of the orienting 
aggregate model which is used for describing the orien- 
tation mechanism in semi-crystalline polymers. The latter 
was formulated first by Crawford and Kolsky 6 who 
modified the Kuhn and Griin theory into a so-called 
pseudo-affine deformation scheme, which differs from the 
original model in that the rotating aggregates do not 
change in length. Ward further developed the aggregate 
model and verified its results by investigating the defor- 
mation of semi-crystalline polymers 7'8. This model pro- 
vides relations between the extension ratio, the macro- 
scopic elastic constants, the orientation parameters such as 
the second and fourth moment of the distribution of the 
chain directions and the elastic constants of the 
anisotropic aggregate. 

The advance of wholly paracrystalline fibres composed 
of rigid-rod chains with a narrow orientation distribution, 
like the aromatic polyamides and polyesters, raises the 
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question whether previously developed deformation 
theories for semi-crystalline fibres provide a proper 
description for the tensile deformation of these fibres. In 
earlier work 9 an analysis of the tensile deformation of 
poly(p-phenylene terephthalamide), abbreviated as Pp- 
PTA, fibres was presented. This analysis was partly based 
on the results obtained from the aggregate theory. Since in 
our opinion this approach was not flawless, we present 
here a new derivation for the stress-strain curve. Only the 
elastic part of the tensile deformation of wholly crystalline 
and oriented fibres is considered, and only small strains 
are admitted. 

THEORY 
The fibre is considered as being built up of a parallel array 
of identical fibrils which are subjected to a uniform stress 
along the fibre axis. Each fibril consists of a series of 
crystallites arranged end to end. A crystallite is composed 
of rigid-rod polymer chains running parallel to the 
symmetry axis. All crystallites have identical mechanical 
properties and are transversely isotropic. These assum- 
ptions are similar to those of the aggregate theory, which 
in addition excludes the distortion of the crystallites under 
tension. 

In the fibre model considered here the crystallites are of 
equal length as measured along their symmetry axis and 
resemble packs of non-bending and parallel oriented 
pencils. The elastic extension of the fibril is the result of the 
distortion of the crystallites which is determined by two 
dominant processes, viz. the extension of the chain and the 
shear between adjacent chains. We assume that this 
distortion does not substantially change the symmetry of 
the crystallite. 

The orientation angles 0 of the symmetry axes of the 
crystallites relative to the fibril axis follow a distribution 
which, when measured along a meridian, is represented by 
p(O). This distribution can be determined directly by X-ray 
diffraction. The fraction of crystallites in a fibril with an 
orientation-angle between 0 and 0+d0 is given by the 
expression 
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R (8)d8 = 2np(8)sin8d8 

~/2 

f g(8)dS= 1 
0 

The first part of the analysis will be devoted to the 
derivation of the relations between the change of the 
orientation angle 8, the state of strain of the crystallite and 
the stress dtr33 along the fibril axis. Owing to the 
transversal isotropy of the crystallite we need to evaluate 
only the deformation of a small rectangular section PQRS 
ofa  crystallite lying in the plane formed by the symmetry 
axis along PR and the fibril axis as depicted in Figure 1. 
Omitting the pure translational part of deformation the 
new coordinates of the section PQRS deformed by a 
strain function (u,w) are 

P'(0,0), Q' z, dz + z 

,/ ~u ~w \ , /  au. Ou ~w +~a.'~ 
S / d x  + _ ~ d x , ~ x I , R  ldx  + _----Ox + _-=~dz,dz + 

\ ax ax J \ ax az ax az-- )  

where x and z are orthogonal axes related to the fibril such 
that z is parallel to the fibril axis. The corresponding strain 
tensor is 

l f au i t3u~'~ 

where u 1 =u,  U 3 : W ,  X 1 : X  and x,  : z .  
As rigid rotation of the crystallites is not considered, the 

displacement gradient is symmetric• Hence 

~u dw 
e~3 = ~z Ox 

After deformation the orientation angle of the symmetry 
axis is given by 

R t R  t, 

tan(0 + d 0) = - -  
P'R" 

sl a + (el 1 + 1)tan8 

1 +%3 + e l ,  tan8 

f (dw)q 

dz 0 0" R" 

~ (du) q 

\ 
R' 

p' =p 

0 

dO 

\ 
-{du)s 

Fibril 
oxis 

dx 

(dw)s 

Figure I Deformation of a section PQRS of a crystallite, the 
symmetry axis of which is parallel to PR and subtends an angle 0 
with the fibril axis 

from which is derived 

d8 = s13(cos28- sin28) + (ell - e33)sinScos8 (1) 

Relative to the axes of the crystallite the compliance 
tensor S'uk t with transversal isotropy is given by five 
independent constants 

1 t 
S l l l l  : $2222 : -  

e l  

1 
Sl313 = $ 2 3 2 3  4g 

1 r 
$3333 : - -  

e3 

, V12 
S1122 - -  

e l  

p V13 
S 1 1 3 3 :  

e3 

where e 1 is the modulus of elasticity normal to the 
symmetry axis, g the shear modulus in a plane containing 
the symmetry axis, e3 the chain modulus, v12 the Poisson 
ratio for a stress normal to the symmetry axis and via the 
Poisson ratio for a stress parallel to this axis. The strain 
components in equation (1) are given by 

/~11 = S1133d° '33 

/;13 --~ S1333d0"33 (2) 

~33 : s3333dff33  

in which the components of the compliance tensor relate 
to the axes x and z of the fibril (see Figure 1). They can be 
expressed in the elastic constants of the crystallite after a 
coordinate transformation s ,u=ai .a ,  a~ a..¢ where 

• - -  J 2 n  g O  ll~ll~lop 
aim,a j,,.., are gwen by the transformation matrix. 

c;s8 0 sin8 

(aq)= 1 cOs8 ) 
- sin0 0 

This yields 

1 + 1 _  1; in20cos 28 - v' 3(cos48 + sinS0) S1133 =-- 2-. - i  e3 g , , /  e3 

s1333=sinSc°sS{C; s28 sin28e 1 1- \(Vl3e 3 =-2gl) 

(COS 2 8 - - s i n  2 8)} (4) 

1 2 4 Saaaa=--+Asin 0+Bsin 8 (5) 
e ,  

with 

1 2(1+v,3) B = l _ l _  (1+2v~3) 
A -  - -  and -t 

g e3 el g e, 

(3) 

With the relations (2)-(5) we derive from relation (1) 
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dO do'33 
(6) 

sinOcosO 2g 
(2,__ (1  { 1 1 +_vx3~sin20~da33 (13) 

which in integrated form becomes 

tanO= tanOoexp(- ~ )  (7) 

where 0o is the initial orientation angle. Under the tension 
aaa the crystallites with initial orientation angles between 
0 o and 0 o +d0 o will rotate to angles between 0 and 0 +dO. 
Hence the new distribution R'(O) and the initial distri- 
bution R(Oo) are related by 

R'(O)dO = R(Oo)dO o (8) 

Then we may write for a distribution p(O) 

where 

 tan20 = tan2Oo ex,(- ) 
n/2 

f p'(O)tan2OsinOdO 

- -(tan20) = o ./2 

f p'(O)sinOdO 
0 

(9) 

(9a) 

A relation similar to equation (9) was derived previously 

 s,n20  
and experimentally confirmed for PpPTA fibres 9. For a 
contracted distribution of Gaussian shape the difference 
between both orientation parameters is small. The differ- 
ence by a factor 2 in the exponential term is due to the fact 
that in the earlier work expression (5) was used as a 
starting point for the analysis. 

The contribution of a deformed crystallite to the fibril 
strain can be defined in two ways. The first is based on the 
relative change in length of a line element oriented parallel 
to the fibre axis 

e~ 1) = PQ' - 1 (10) pQ =e33 

which, with relations (2) and (5), is expressed by 

(i) _ 
8 c --$3333d0"33 (11) 

A simple derivation of equation (13) pertaining to the 
fibre model is based on the consideration that the fibril 
resembles a zig-zag chain 1 o as illustrated in Figure 2. The 
chain consists of rods each of which is capable of 
extension but not of bending, with a modulus e~. The 
rotation of the rods is determined by a shear modulus g' of 
the surrounding material. Hence the rotation of a rod 
under action of a force dfis identical to the rotation of the 
line element AB of a square subjected to a shear stress 
sinOcosOdf/F where F is the cross-section of the chain. If 
the total length of the chain is given by L = nrcosO then 

dL = n(cosOdr- rsinOdO) 

The extension of the rod is 

d 
r d f  2 r~ 

r = e - ~ O S  U 

and the rotation of the rod is 

dO = df  sin0cos0 
29'F 

S d L / d f  which yields for the compliance = ~ - / ~  

S = I +  { l _ l ~ s i n 2 0  
e 3 \29 e 3 J  

(14) 

While the first definition for e¢ implies that section 
PQRS remains rectangular in shape and that the strain is 
discontinuous at the crystallite boundaries, the second 
definition supposes an oblong shape of the crystallite, 
which may change in shape and thus in length, and takes 
account of the coupling of successive crystallites through- 
out the orientation process. 

The derivation of the fibril extension under an axial 
stress will be based on the second definition as expressed 
by relation (13). In order to keep the derivation tractable, 
it is assumed that the mechanical properties of the 
crystallite are strongly anisotropic, i.e. e3 ">0 and ea ,3, el. 
Let R(Oo) be the initial distribution and R'(O) the distri- 
bution at a stress a3 3 = a, then the extension of the fibril is 
given by 

with $3333 given by relation (5). The second definition is a 
consequence of the selected fibre model and is based on 
the relative change of the projection on the fibre axis of a 
line element parallel to the symmetry axis of the crystallite 

e ~ 2 ) = P ' R " _ I  8w Ow ax 
PQ = Ozz + 8x 8z 

where x, z and w are taken at R. This implies 

g(2)-- 833 +elatan0 (12) ¢ - -  

which yields, together with relations (2), (4) and (5) 

Z~-zag chain as a model for a fibdl 

f" ~ 7 "  Pf 

" ,  j . f ' "  

" k  • "  " " "  • 

o - ,  D O . o -  

8cos8 

Figure 2 Schematic presentation of a simple model for a fibril. 
The stress diagram indicates the stresses acting on a crystallite 
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n / 2  

f R'(O)4(O)dO 
0 e: + 1 - ~ 

f R(Oo)4oOodOo 
0 

(15) 

where 4o0o and 2(0) are the projected lengths of the 
crystallite measured along the fibril axis for stresses 0 and 
a respectively. From relations (6) and (13) the relative 
extension of the crystallite at stress a is derived 

unusual definition is taken 

n/2 

f R'(O)sin2OcosOdO 
(sin20) = o -~/2 

f R(Oo)cosOodOo 
0 

(21) 

then it follows from relation (20) that for a contracted 
distribution the tensile strain of the fibre is 

4(0) / a \ cos0 
2000 1 = e x p ~ 3 ) ~ o -  1 (16) 

a (sin2 0o) e: ~--- + - -  { 1 - exp(-  a/g)} (22) 
e 3 2 

This results in the following formula for the fibril 
extension 

7/2 

(~3)fR(Oo)cosOo(e-°/Osin20o + COS2 00)- l/2d00 

ef + 1 = exp ~/2 

f R(Oo)COS OodOo 
(17) 0 

de: 
and for the compliance $33 =~-a  we get 

n12 

(e~) ! R'(0)cos 0( 1 sin2 0 "  

833 = exp ,~/2 

f R(Oo)cOs OodOo 

0 
where R'(O) is given by 

exp(~9)R(0o) 

R'(O)=cos20 + exp(g ~in20 

(18) 

(19) 

Likewise we find that the expression for the compliance 
relation (18) for a/e 3 ~ 1 becomes 

$ 3 3 " 1  + (sin2@ (23) 
e3 29 

Formula (22) for the fibril strain was derived previously 
in a less rigorous manner 9, with the distinction that the 
exponential term contained the expression 2a/9 instead of 
a/9. This resulted from an incorrect derivation of relation 
(7). Furthermore the cofactor of (sin2@ in relation (23) is 
(20)- 1 whereas in the relation for the compliance derived 
for the classical aggregate theory represented by relation 
(5) this factor is approximately 9 - 1. This is a consequence 
of the different strain definitions (10) and (12). 

RESULTS AND DISCUSSION 

The formulas derived for the elastic extension (relation 
(17)) and the compliance of the fibril (relation (18)) contain 
the crystallite orientation distribution p(O) in an un- 
specified form. They enable us to follow the change of the 
shape of the distribution during tensile deformation and 
to investigate the effect of the kind of initial distribution 
on the tensile curve of the fibre. The distributions selected 
for this analysis are a Cauchy distribution 

and where by relation (7) 0o =arctan{exp(a/29)tanO}. 
The elastic tensile deformation of a fibril made up of a 

series arrangement of oblong crystallites, being tran- 
versely isotropic and having an initial distribution of the 
symmetry axes R (0o), is completely described by formulae 
(17), (18) and (19). Since a fibre in our model is made up of 
identical fibrils arranged parallel and subjected to the 
same stress, these formulas define the elastic extension of 
the fibre. 

For a contracted distribution p(Oo) and for a/e a ~ 1 the 
expression for the fibril strain relation (17) becomes 

~/2 
a 1 2 f .o osOoI +:n Oo.-e-+Oo 

0 
~f = n/2 

f R(Oo)cosOodOo 
0 

(20) 

If for the orientation parameter (sin20) the following 

pc(0O)=i pc(0) (24) 
+ p tan20o 

and a Gaussian distribution 

pg(Oo) = pg(0)exp( - q tan 20o) (25) 

The shape of a symmetrical distribution profile is de- 
scribed by the ratio 2w/r, where 2w is the width at half of 
the peak height p(0) and fl is the integral breadth defined 
by 

n/2 

f p(O)dO 
f l  = - n/2 _ _  p(O) 

Using relation (19) the distributions at increasing stress 
values were calculated for Cauchy and Gaussian initial 
distribution. Table 1 lists the shape parameter 2w/fl as a 
function of the applied stress. Apparently the shape 
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Table 1 Width at half-height, 2w, and the shape parameter, 2w/f3, as a function of the stress. The initial distributions are of Cauchy 
and Gaussian type with 2w = 30 ° . The value for g in the calculations was 2 GPa) 

Cauchy Gauss 

o 2w 2w 
(GPa) (degrees) 2w/f3 (degrees) 2w/f3 

0 30 0.789 30 0.962 
1 22.7 0.784 23.0 0.952 
2 17.4 0.783 17.7 0.946 
3 13.5 0.783 13.7 0.943 
4 10.4 0.783 10.6 0.921 
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0 20 4 0  60  80  

a 

Angle in degrees 

Figure 3a Plots of R(O) =2np(O)sinO for increasing stress. The 
initial distribution P(Oo) is of the Cauchy type with 2 w = 3 0  *. The 
shear modulus g is 2 GPa 
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Figure 3b Plots of R(O)=2np(O)sinO for increasing stress. The 
initial distribution p(Oo) is of the Gaussian type wi th 2 w = 3 0  *. The 
shear modulus g is 2 GPa 

parameter of p(O) changes very little, only a 
progressive contraction occurs. A different result is 
obtained for the non-symmetrical distribution function 
R(O)dO = 2np(O)sinOdO representing the fraction ofcrystal- 
lites having orientation angles between 0 and 0+d0.  
Figures 3a and 3b depict the change of this function at 
increasing stress and show the decreasing number of 
crystallites with orientation angles in the tail of the 
distribution, particularly in case that the distribution is of 
the Cauchy type. The effect of the type of the initial 
distribution and the shear modulus g on the shape of the 
tensile curve of the fibre is shown in Figure 4. 

Tensile curves have been calculated for a Cauchy as 
well as for a Gaussian initial distribution with the same 
width 2w and for g values of 2 and 4 GPa,  while for all 
curves e3 = 240 GPa. The initial moduli, Eo = S3-a ~, for the 
Cauchy distribution are 22.4 and 41 GPa  and for the 

Gaussian distribution 66.5 and 104.1 GPa  respectively, 
for the lower and higher value of g. Evidently, according 
to this fibre model the initial distribution and the 
crystallite shear modulus are important factors determin- 
ing the stress build-up, i.e. they affect the brittleness of the 
fibre. Figure 5 shows the effect of the distribution in a 
different way. Tensile curves are computed for Gauss and 
Cauchy distributions with 2w = 2.5 ° and 26.5 °. The initial 
slope, E 0 = 43.5 GPa,  of the curve for a Gauss distribution 
of 2w = 26.5 ° equals the initial slope of the curve for a 
Cauchy distribution of 2w = 2.5 °. 

In the actual tensile curve of PpPTA fibres the exten- 
sion is made up of elastic, visco-elastic and plastic 
deformation. Figure 6 depicts the first and repeated 
extensions of a low and high modulus PpPTA fibre, and 
the theoretical curves computed for e 3 =240 G Pa  and 
g = 2 G P a .  The orientation parameters {sin20o) were 
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Figure 6 Comparison of the experimental elastic extension with 
the computed curve for a low and a high modulus PpPTA fibre. 
Curves (A) are the first extensions, (B) are the repeated 
extensions and (C) are the computed curves with origin 
displaced to the right for the sake of clearness 

o 1 ~  . . . .  I 
0 I 2 3 4 5 
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Figure 4 Calculated tensile curves for a Gaussian (G) and 
Cauchy (C) distribution of P(00), both with 2 w = 2 0  ° and for 
e3=240  GPa. Two values for the shear modulus, g = 2  and 4 GPa, 
have been used 
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Figure 5 Tensile curves for a Gaussian (G) and a Cauchy (C) 
distribution of P(00), both calculated for 2 w = 2 . 5  ° as well as for 
2 w = 2 6 . 5  °. Note the same initial modulus of 43.5 GPa for the 
narrow Cauchy and the broader Gauss distribution 

derived with relation (23) from the sonic moduli measured 
before the second extension. The absence of any appreci- 
able hysteresis between the repeated extensions shows 
that the deformation is practically elastic. Comparison of 
the repeated extensions with the computed curves, proves 
that the simple relation (22) provides a good approxi- 
mation for the elastic extension of this fibre. 

It should be noted that the formula for the extensional 
compliance $33 for this fibre model does not contain the 
fourth moment (sine0) of the orientation distribution 
p(O). The formula for the classical series aggregate model 

$33 = l + A ( s i n 2 0 )  + B(sin'0) (26) 
e3 

is derived by averaging relation (5) and is based on the 
assumption that the crystallites do not distort under the 
applied stress. For orientation distributions commonly 
found in high-modulus fibres (sin40) ---0, which implies 
that the difference between relations (23) and (26) reduces 
to a factor of 2 in the second term of both relations. The 
linear relation between $33 and (sin20) has been obser- 
ved during tensile deformation of PpPTA fibres 9. The 
slope has a value of 0.26 (GPa)-t, which, according to 
relation (23) results in a value g = 1.9 GPa. Extrapolation 
for (sin20)--*0 gave e3 = 240 GPa. From relations (9) and 
(12), or (26) with (sin40)---.0, we invariably derive inde- 
pendently of the kind of model 

1 1 

I FE0 ea ]  tr 

E e 3 

(27) 

which provides a method for the determination of g. By 
measuring the sonic modulus for increasing load, relation 
(27) gave g = 2 G P a  9. We believe that this confirmation of 
g underlines the correctness of the presented fibre model 
for describing the elastic extension of PpPTA fibres. 

Finally, it seems likely to us that the fibre model is also 
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suited to describe the elastic extension of carbon fibres. 
Preliminary calculations show that in the expression for 
the compliance (relation (23)) the factor (2g)-1 must be 
replaced by 

where e 1 is the modulus in the graphite planes, e a the 
modulus normal to these planes and O the modulus for the 
shearing deformation of these planes. A detailed account 
will be published later. 
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